Subalgebra of $L_1(G)$ associated with Laplacian on a Lie group
نویسندگان
چکیده
منابع مشابه
On dimension of a special subalgebra of derivations of nilpotent Lie algebras
Let $L$ be a Lie algebra, $mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$. We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields. Also, we classi...
متن کامل∨ ) ∈ ∈ , - fuzzy Lie subalgebra and ideals
generalization of Rosenfeld's fuzzy subgroup, and Bhakat and Das's fuzzy subgroup is given in [20]. Lie algebras are so-named in honor of Sophus Lie, a Norwegian mathematician who pioneered the study of these mathematical objects. Lie's discovery was tied to his investigation of continuous transformation groups and symmetries. The structure of the laws in physics is largely based on symmetries....
متن کاملNon-degenerate graded Lie algebras with a degenerate transitive subalgebra
The property of degeneration of modular graded Lie algebras, first investigated by B. Weisfeiler, is analyzed. Transitive irreducible graded Lie algebras L = ∑ i∈Z Li, over algebraically closed fields of characteristic p > 2, with classical reductive component L0 are considered. We show that if a non-degenerate Lie algebra L contains a transitive degenerate subalgebra L′ such that dimL1 > 1, th...
متن کاملThe Frattini /7-subalgebra of a Solvable Lie
In this paper we continue our study of the Frattini p-subalgebra of a Lie />-algebra L. We show first that if L is solvable then its Frattini p-subalgebra is an ideal of L. We then consider Lie p-algebras L in which X. is nilpotent and find necessary and sufficient conditions for the Frattini p-subalgebra to be trivial. From this we deduce, in particular, that in such an algebra every ideal als...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1974
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-31-2-259-287